2,725 research outputs found

    Temporal variation in effect sizes in a long-term, split-plot field experiment.

    Get PDF
    Ecological field experiments initiate successional and evolutionary changes amongst resident species, yet effect sizes are often reported as if they were constants. Few ecological studies have addressed their questions through long-term, experimental approaches, and many questions remain unanswered regarding temporal patterns in ecological effect sizes. We document temporal variation in effect sizes in response to pulse and press manipulations in a long-term factorial field experiment at Nash's Field, England. The experiment comprises seven treatments applied in a split-plot design to test the single and interactive effects of herbivory by insects, molluscs and rabbits, liming, nutrient limitation (applied as press experiments), competition (exclusion of grasses or herbs with specific herbicides), and seed limitation (pulse experiments) on plant community dynamics. The response of all vascular plant species was followed for two decades. High species richness was positively related to the minus-grass herbicide in the first decade and negatively related to both nitrogen addition and the abundance of dominant species in both decades. Many significant effects appeared quickly, but some large effects were not detected until year 15. Press experiments produced some long-lasting effects, but effect sizes changed due to both idiosyncratic 'year effects' and secular trends. For pulse experiments, most effects -including positive and negative responses to herbicide application and the invasion of most of the sown species- disappeared quickly. However, some endured or grew monotonically, such as the invasion of two sown species that benefited from particular combinations of the press treatments. The fastest effects to appear were the responses from established species. Many of these responses were negative, likely resulting from reduced niche dimensionality and competitive exclusion by new dominant species. Contrarily, one of the largest community-level effects took well over a decade to appear: the natural invasion by one species, which responded to a four-way interaction between experimental treatments. The insights gained from individual effects increased with the duration of the lag before their first appearance, drawing attention to the importance of long-term, manipulative field experiments. This experiment also reinforces the point that factorial experiments are the most insightful way to explore ecological interactions

    Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link

    Get PDF
    Chronic nitrogen (N) fertilization can greatly affect soil carbon (C) sequestration by altering biochemical interactions between plant detritus and soil microbes. In lignin-rich forest soils, chronic N additions tend to increase soil C content partly by decreasing the activity of lignin-degrading enzymes. In cellulose-rich grassland soils it is not clear whether cellulose-degrading enzymes are also inhibited by N additions and what consequences this might have on changes in soil C content. Here we address whether chronic N fertilization has affected (1) the C content of light versus heavier soil fractions, and (2) the activity of four extracellular enzymes including the C-acquiring enzyme β-1,4-glucosidase (BG; necessary for cellulose hydrolysis). We found that 19 years of chronic N-only addition to permanent grassland have significantly increased soil C sequestration in heavy but not in light soil density fractions, and this C accrual was associated with a significant increase (and not decrease) of BG activity. Chronic N fertilization may increase BG activity because greater N availability reduces root C:N ratios thus increasing microbial demand for C, which is met by C inputs from enhanced root C pools in N-only fertilized soils. However, BG activity and total root mass strongly decreased in high pH soils under the application of lime (i.e. CaCO3), which reduced the ability of these organo-mineral soils to gain more C per units of N added. Our study is the first to show a potential ‘enzyme link’ between (1) long-term additions of inorganic N to grassland soils, and (2) the greater C content of organo-mineral soil fractions. Our new hypothesis is that the ‘enzyme link’ occurs because (a) BG activity is stimulated by increased microbial C demand relative to N under chronic fertilization, and (b) increased BG activity causes more C from roots and from microbial metabolites to accumulate and stabilize into organo-mineral C fractions. We suggest that any combination of management practices that can influence the BG ‘enzyme link’ will have far reaching implications for long-term C sequestration in grassland soils

    Operative conditions evaluation for efficient building retrofit : a case study

    Get PDF
    The implementation of energy efficiency measures into the existing building stock is essential to meet the 2020 targets set by the EU Energy Performance of Buildings Directive (EPBD) and reinforced with the "EPBD-recast". Thus, energy refurbishment of existing buildings is fundamental to achieve these goals. However, energy issues should not be the only concerns since the indoor environmental quality (IEQ) is also as important. When planning a building retrofit it is then necessary to consider the energy efficiency requirements as well as the IEQ. To do so, the main problems of the existing buildings should be identified. This work presents a study carried out in a large office building to identify the main pathologies related to the energy efficiency and to the IEQ. The main objective of this study was to characterize the actual situation of a building that represents a great number of the Portuguese office buildings in order to identify the principal problems that occurs in this type of buildings, to support the development of a refurbishment project of the building that can optimize both the energy efficiency and the relevant parameters to the IEQ and that are also solutions with potential to be used in other buildings.This work was support by FEDER funds through the Competitiveness Factors Operational Programme – COMPETE and National Funds through FCT – Foundation for Science and Technology under the project FCOMP-01-0124- FEDER-007189

    Aphid Wing Induction and Ecological Costs of Alarm Pheromone Emission under Field Conditions

    Get PDF
    The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae) releases the volatile sesquiterpene (E)-β-farnesene (EBF) when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF) and tested in two different environmental conditions (field and laboratory). As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84±0.98%) compared to the hexane control (1.54±0.25%). In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1±5.5%) than in the control (66.9±4.6%), in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions

    Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms

    Get PDF
    Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidium planktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z. planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z. planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.

    The impact of predation by marine mammals on Patagonian toothfish longline fisheries

    Get PDF
    Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources

    Do female association preferences predict the likelihood of reproduction?

    Get PDF
    Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (<i>Xiphophorus helleri</i>) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice but that ornament characteristics of the male are also important

    Temporal variance of disturbance did not affect diversity and structure of a marine fouling community in north-eastern New Zealand

    Get PDF
    Natural heterogeneity in ecological parameters, like population abundance, is more widely recognized and investigated than variability in the processes that control these parameters. Experimental ecologists have focused mainly on the mean intensity of predictor variables and have largely ignored the potential to manipulate variances in processes, which can be considered explicitly in experimental designs to explore variation in causal mechanisms. In the present study, the effect of the temporal variance of disturbance on the diversity of marine assemblages was tested in a field experiment replicated at two sites on the northeast coast of New Zealand. Fouling communities grown on artificial settlement substrata experienced disturbance regimes that differed in their inherent levels of temporal variability and timing of disturbance events, while disturbance intensity was identical across all levels. Additionally, undisturbed assemblages were used as controls. After 150 days of experimental duration, the assemblages were then compared with regard to their species richness, abundance and structure. The disturbance effectively reduced the average total cover of the assemblages, but no consistent effect of variability in the disturbance regime on the assemblages was detected. The results of this study were corroborated by the outcomes from simultaneous replicate experiments carried out in each of eight different biogeographical regions around the world
    corecore